Национальный исследовательский Томский государственный университет

Областная олимпиада по математике (предмет) 16 мая 2021 года

Первый курс

Задача 1. Решите уравнение $(x+1)^4 + (x+3)^4 = 14$ в действительных числах.

Задача 2. Профессор выписал на доске 100 функций: $f_1(x) = x$, $f_2(x) = x^2$, ..., $f_{100}(x) = x^{100}$, и предложил студентам записать в тетради те попарные суммы этих функций, которые являются монотонными на всей числовой прямой (например, $f_1(x) + f_1(x)$, $f_3(x) + f_5(x)$ и т.д.). Какое наибольшее количество различных функций могут записать в тетрадях студенты?

Задача 3. Пусть $A = \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_2 & 1 \\ 1 & 0 \end{pmatrix} ... \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix}$, где $a_1, \ldots, a_{n-1}, a_n$ — четные целые числа, отличные от нуля. Докажите, что сумма элементов первой строки матрицы A является нечетной.

Задача 4. Известно, что в числовой сходящейся последовательности произведение любых двух соседних членов равно двум или трем. Найдите предел этой последовательности.

Задача 5. Заданы три прямые и плоскость. Оказалось, что существует такой угол α , что для любых двух из трех заданных прямых угол между этими прямыми равен α . Более того, угол между любой из заданных прямых и заданной плоскостью тоже равен α . Найдите α .

Задача 6. Найдите все значения параметра a, при которых функция $f: \mathbb{R} \to \mathbb{R}$, $f(x) = ax^5 + x^3 + ax$ является биекцией.

Решения.

Задача 1. Решите уравнение $(x+1)^4 + (x+3)^4 = 14$ в действительных числах.

Otbet:
$$x = \pm \sqrt{\sqrt{15} - 3} - 2$$
.

Решение. После замены t=x+2 уравнение приобретет вид $(t-1)^4+(t+1)^4=14$. Раскроем скобки с помощью формулы бинома Ньютона $(a+b)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4$, приведем подобные и сократим на два: $t^4+6t^2-6=0$. Это биквадратное уравнение имеет два корня: $t_{1,2}=\pm\sqrt{\sqrt{15}-3}$. Значит, исходное уравнение также имеет два корня $x_{1,2}=\pm\sqrt{\sqrt{15}-3}-2$.

Задача 2. Профессор выписал на доске 100 функций: $f_1(x) = x$, $f_2(x) = x^2$, ..., $f_{100}(x) = x^{100}$, и предложил студентам записать в тетради те попарные суммы этих функций, которые являются монотонными на всей числовой прямой (например, $f_1(x) + f_1(x)$, $f_3(x) + f_5(x)$ и т.д.). Какое наибольшее количество различных функций могут записать в тетрадях студенты?

Ответ: 1275.

Решение. Если k и l — нечетные числа, то функция вида $f_k(x)+f_l(x)=x^k+x^l$ является монотонной на все числовой прямой как сумма двух возрастающих функций. Если же k и l — четные числа, то функция вида $f_k(x)+f_l(x)=x^k+x^l$ убывает на промежутке $(-\infty;0]$ и возрастает на промежутке $[0;+\infty)$, а значит, не является монотонной на всей прямой. Пусть теперь одно из чисел k или l нечетно, а другое четно. Тогда для функции $g(x)=f_k(x)+f_l(x)=x^k+x^l$ выполняется равенство g(0)=g(-1)=0, а значит, она не является монотонной.

Итак, функция $f_k(x)+f_l(x)$ будет монотонной только в том случае, когда k и l – нечетные числа. Среди целых чисел от 1 до 100 содержится ровно 50 нечетных чисел. Значит, найдутся 50 функций с равными слагаемыми ($f_1(x)+f_1(x)$, $f_3(x)+f_3(x)$, ..., $f_{99}(x)+f_{99}(x)$), и $C_{50}^2=\frac{50\cdot 49}{2}=1225$ функций с разными слагаемыми. Таким образом, наибольшее количество искомых функций равно 1275.

Замечание 1. Немонотонность функции g(x) можно было доказать и с помощью достаточного условия экстремума. Не нарушая общности, можно считать, что k < l. Покажем, что $x_0 = \frac{l-k}{l} - \frac{k}{l}$ — экстремум функции g(x). Действительно, $g'(x) = kx^{k-1} + lx^{l-1} = x^{k-1} \left(k + lx^{l-k}\right)$, $g'(x_0) = 0$, $g''(x) = k(k-1)x^{k-2} + l(l-1)x^{l-2} = x^{k-2} \left(k(k-1) + l(l-1)x^{l-k}\right)$, $g''(x_0) = k(k-l)x_0^{k-2} \neq 0$.

Следовательно, в окрестности точки \mathcal{X}_0 функция не является монотонной.

Замечание 2. Количество функций можно вычислить как количество сочетаний с повторениями $\overline{C}_{50}^2 = C_{51}^2 = \frac{51\cdot 50}{2} = 1275$

Задача 3. Пусть $A = \begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_2 & 1 \\ 1 & 0 \end{pmatrix} ... \begin{pmatrix} a_n & 1 \\ 1 & 0 \end{pmatrix}$, где $a_1, \ldots, a_{n-1}, a_n$ — четные целые числа, отличные от нуля. Докажите, что сумма элементов первой строки матрицы A является нечетной.

Решение. Обозначим через $(y_k \quad z_k)$ первую строку матрицы $\begin{pmatrix} a_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_2 & 1 \\ 1 & 0 \end{pmatrix} ... \begin{pmatrix} a_k & 1 \\ 1 & 0 \end{pmatrix}$, где k — натуральное число и $1 \le k \le n$. Тогда из определения произведения матриц следует, что $y_{k+1} = y_k a_{k+1} + z_k$ и $z_{k+1} = y_k$. Сложив эти равенства, получим $y_{k+1} + z_{k+1} = y_k a_{k+1} + z_k + y_k$. Так как $y_k a_{k+1}$ — четное число, то четность чисел $y_k + z_k$ и $y_{k+1} + z_{k+1}$ одинакова. Осталось заметить, что $y_1 + z_1 = a_1 + 1$ нечетное.

Критерии.

Задача 4. Известно, что в числовой сходящейся последовательности произведение любых двух соседних членов равно двум или трем. Найдите предел этой последовательности.

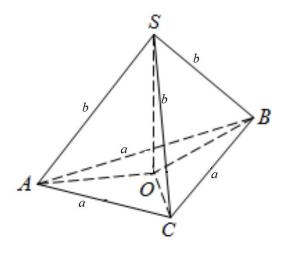
Other:
$$-\sqrt{3}; -\sqrt{2}; \sqrt{2}; \sqrt{3}$$
.

Решение. Пусть $\{a_n\}$ — искомая последовательность, и $a=\lim_{x\to\infty}a_n$. Пусть $b_n=a_n\cdot a_{n+1}$. Тогда последовательность $\{b_n\}$ сходящаяся, причем $\lim_{n\to\infty}b_n=a^2$. С другой стороны, членами последовательности $\{b_n\}$ могут быть только числа 2 или 3, и значит, $\{b_n\}$ сходится либо к двум либо к трем. Таким образом, $a=\pm\sqrt{2}$ или $a=\pm\sqrt{3}$. Примеры постоянных последовательностей с общими членами $-\sqrt{3}$; $-\sqrt{2}$; $\sqrt{2}$; $\sqrt{3}$ соответственно показывают, что все четыре ответа возможны.

Задача 5. Заданы три прямые и плоскость. Оказалось, что существует такой угол α , что для любых двух из трех заданных прямых угол между этими прямыми равен α . Более того, угол между любой из заданных прямых и заданной плоскостью тоже равен α . Найдите α .

Other:
$$\alpha = \arccos \frac{\sqrt{7} - 1}{3}$$

Решение. Так как при параллельном переносе угол не меняется, то можно считать, что все заданные прямые проходят через точку S, не лежащую в заданной плоскости. Предположение, что угол α прямой, приводит к противоречию с единственностью перпендикуляра к плоскости, проведенного из точки S. Значит, α — острый. Равные острые углы между каждой парой прямых исключают плоский вариант расположения прямых. Таким образом, заданные прямые пересекают заданную плоскость в трех различных точках A, B, C, не лежащих на одной прямой.



Рассмотрим случай, когда углы между данными прямыми совпадают с углами ASB, ASC и BSC (т.е. углы ASB, ASC и BSC являются острыми).

Проведем перпендикуляр SO на плоскость (ABC). Получим $\Delta SAO = \Delta SBO = \Delta SCO$ (так как SO — общая сторона, $\angle SOA = \angle SOB = \angle SOC = 90^\circ$, $\angle SAO = \angle SBO = \angle SCO = \alpha$), и $\Delta SAB = \Delta SBC = \Delta SCA$ (так как $\angle ASB = \angle BSC = \angle CSA = \alpha$, SA = SB = SC).

Обозначим AB = BC = AC = a, AS = BS = CS = b. Из теоремы косинусов для ΔSAB следует, что $AB = a = b\sqrt{2(1-\cos\alpha)}$. Так как точка O является центром равностороннего треугольника ABC, то $AO = \frac{a}{\sqrt{3}} = b\sqrt{\frac{2(1-\cos\alpha)}{3}}$. Из треугольника ASO видно, что $\cos\alpha = \frac{AO}{AS} = \sqrt{\frac{2(1-\cos\alpha)}{3}}$. Преобразовав это равенство и сделав замену $t = \cos\alpha$, придем к уравнению $3t^2 + 2t - 2 = 0$, из которого $t = \frac{-1 \pm \sqrt{7}}{3}$. Так как $\cos\alpha > 0$, то $\alpha = \arccos\frac{\sqrt{7} - 1}{3}$.

Покажем, что случай, когда какой-либо из углов ASB, ASC или BSC является тупым, невозможен. Предположим, что угол ASB является смежным к углу между прямыми AS и BS. Тогда $\angle ASC = 180^{\circ} - \alpha$ и $AB = b\sqrt{2(1+\cos\alpha)} = 2b\cos\frac{\alpha}{2}$. Но при этом $AB \le AO + OB = 2b\cos\alpha$. Получаем, что $2b\cos\frac{\alpha}{2} \le 2b\cos\alpha$, а это противоречит убыванию функции $y = \cos x$ при x, лежащих в первой четверти.

Замечание. Если угол между параллельными прямыми и угол между плоскостью и параллельной ей прямой считать нулевыми, то условию задачи еще удовлетворяет $\alpha=0$. Добавление или, наоборот, потеря этого случая никак не влияет на оценивание задачи.

Задача 6. Найдите все значения параметра a, при которых функция $f: \mathbb{R} \to \mathbb{R}$, $f(x) = ax^5 + x^3 + ax$ является биекцией.

Other:
$$a \in \left(-\infty; -\frac{3\sqrt{5}}{10}\right] \cup \left[0; +\infty\right)$$

Решение. Так как функция f(x) непрерывна, то ее инъективность равносильна строгой монотонности. Заметим, что при a=0 функция $f(x)=x^3$ является строго возрастающей. При $a\neq 0$ исследуем функцию на монотонность с помощью производной $f'(x)=5ax^4+3x^2+a$. Найдем нули производной. Замена $t=x^2\geq 0$ приводит к квадратному уравнению $5at^2+3t+a=0$. Если дискриминант $D=9-20a^2$ неположителен, то квадратичная функция $g(t)=5at^2+3t+a$ неотрицательна при a>0 и неположительна при a<0 на всей числовой оси. Следовательно, при $a\in \left(-\infty; -\frac{3\sqrt{5}}{10}\right] \cup \left[\frac{3\sqrt{5}}{10}; +\infty\right)$ функция f(x) будет строго монотонной. Если же дискриминант положителен, т.е. $a\in \left(-\frac{3\sqrt{5}}{10}; \frac{3\sqrt{5}}{10}\right)$, то уравнение будет иметь два различных корня, причем из теоремы Виета, записанной для соответствующего приведенного уравнения $t^2+\frac{3}{5a}t+\frac{1}{5}=0$, видно, что при a>0 оба корня отрицательны, а при a<0 оба корня положительны. Таким образом, в области $t\geq 0$ функция g(t) знакопостоянна также при $a\in \left(0;\frac{3\sqrt{5}}{10}\right)$. Окончательно получаем, что функция f(x) является инъекцией при $a\in \left(-\infty; -\frac{3\sqrt{5}}{10}\right] \cup \left[0; +\infty\right)$.

Исследуем теперь f(x) на сюрьективность. Для этого вычислим пределы функции f(x) при $x \to \pm \infty$. Если a = 0, то $\lim_{x \to \pm \infty} x^3 = \pm \infty$; если a > 0, то $\lim_{x \to \pm \infty} ax^5 + x^3 + ax = \lim_{x \to \pm \infty} ax^5 \left(1 + \frac{1}{ax^2} + \frac{1}{x^4}\right) = \pm \infty$; если же a < 0, то $\lim_{x \to \pm \infty} ax^5 + x^3 + ax = \lim_{x \to \pm \infty} ax^5 \left(1 + \frac{1}{ax^2} + \frac{1}{x^4}\right) = \mp \infty$. Так как функция f(x) непрерывна, то по теореме о промежуточном значении получаем, что f(x) является сюрьекцией для любого a. Следовательно, f(x) является биекцией при $a \in \left(-\infty; -\frac{3\sqrt{5}}{10}\right] \cup \left[0; +\infty\right)$.